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Major NARSTO AQ Assessments

* An Assessment of Tropospheric Ozone Pollution
(2000) — in response to 1991 NAS Report,
Rethinking the Ozone Problem in Rural and
Urban Environments

« Particulate Matter Science for Policy Makers
(2004) — in response to NAS series on PM
research priorities (1998- 2004)

* Multi-Pollutant Air Quality Assessment (2008 or
9) - in response to NAS, Air Quality
Management in the United States (2004)



NARSTO O3 Assessment - Single pollutant
conceptual model development

“conceptual model building..
attempting to visualize cause-effect phenomena” i
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Conceptual Model's and MPAQM

+ An episodic event of modest inferest to
multiple pollutants

» A collection of episodic events, each of
severe interest to a particular pollutant

» Beyond episodicity to seasonal, annual and
other periods relevant to regulatory and
other metrics

* Message - encompassing , not limiting
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NARSTO O3 Assessment - Raising
consequences of multiple pollutant
interactions - conceptual model

Development (contemporary with
FACA and OTAG)
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NARSTO PM3 Assessment - Expanding consequences of
multiple pollutant interactions conceptual model development

Table 3.2. Typical pollutant / atmospheric issue relationships.®

Reduction in Change in associated pollutant or atmospheric issue

pollutant emissions PM Composition

Black Carbon
Primary Organic
Compounds

Other primary PM
(crustal, metals, etc.)
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(Table 1. Possible pollutant,/atmospheric relationships® associated with emission precursor reductions.
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NARSTO PM3 Assessment - Basic linkages across ozone and
aerosol transformation processes
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NARSTO MPMM Assessment - Basic linkages across ozone, PM,
HAPs, and deposition
Integration across pollutants and media: tradeoffs and optimum strategies?
Primary Sources
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Note on climate-AQ interactions

* What are the relative response differences
across pollutant categories in changing
climate scenarios
— e.g., do we see greater or lesser benefits of

formaldehyde relative to sulfate forced by
temperature, moisture changes



Current NARSTO MP Assessment

Response to 2004 NAS Report
yin and yang or who comes first regarding MP and accountability

Expanded from atmospheric science focus to include —
— All pollutant categories
— Health effects and human exposure
— Ecosystem effects
— Air quality climate interactions
Chapters addressing
— Air quality management frameworks and Policy considerations
— Risk based management (Hubbell)

— Emissions, modeling, chemistry, measurements, ecosystems, health,
climate,

Preliminary Findings (Hubbell)
— emphasis on obstacles compromising MPAQM risk assessments
* E.g., inadequate health outcome data based on MP exposures



Multiple processes in addressing MPMM assessments

i A : Air Masses A
S Free Troposphere
Particulate
Matter -Local or long-distance transport
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Multiple space and time scales

when addressing MPs

monthsto years
€O, CH,, CO,, N,0

210,000 km

days to 1 month
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hours -1 day
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Source, K. Demerjian
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2006 ust Transort Event Oberved from ALIPSO

David Winker



New findings on roadway pollution

High exposure to ultrafine
particles, CO, other
pollution near roadway

Increased risk near and on
roadways
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Example: New Haven, CT

70% of block group centroids are within 500m from a major road
>10,000 ADT
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Local (near source) scale processes

Early Stages of Exhaust Dilution:
NO, + NO + H,O & 2HONO

2 NQ, + H,O & HONO + HNO,
2NO + O, — 2NO,

R.NH+ HONO — R,NNO + H,O
803 + H20 —> H2804(g) —> H2804(S)
SVOC(g) — SVOC(s) » PMqe

1 —10 seconds
Initial Exhaust
Dilution Mixing

10’s of seconds
Vehicle Wake

Plume Entrainment Stage:

O; +NO - NO, + O,

O, + Alkene -» RCHO + RCOO
SVOC(s) - SVOC(g)

NO, + O, - NO; + O,

NO, + VOCs —» RNO,

1- 5 minutes
Atmospheric Dispersion & Vehicle Plume
Entrainment

Transport Distance | meters

10s of meters

100s of meters >

Source, K. Demerjian



MPAQM/multiscale assessments benefit from nontraditional
monitoring strategies: example - intensive, yet iterative,
mobile platform based sampling in Mexico City
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Toolboxes for Integrated
Assessments



Multi-Pollutant Analytical Framework

Future = National Air Pollutant Assessment
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Maximizing space/time/composition through systems
Integration

 Integration of
systems to (2
improve Total column depth

. . (through Satellites)
— air quality models : TN
for forecast

— Current and
— Retrospective
assessments
* Global-Regional
Air Quality
Connections

« Climate-AQ
connections Integrated Observation- Modeling

Optimized air chemistry

Vertical Profiles]
Land AQ Monitors




Increased complexity of assessments
benefits from conceptualizing the problem

* e.g, shift to weight-of-evidence for ozone
SIPs required multiple sources of analyses

* as variables increase, rigid solutions limit
flexibility

* A robust analytical approach will enable
incorporation of the unanticipated



How do we start building MP conceptual models?

Step 1 - Develop broad range environmental characterization map
addressing multiple pollutants, space, and temporal patterns (annual,
seasons, dai I?/ events) - accommodating space/time attributes of
different pollutants
- Ideally, national or regional resources available (e.g., NAPA)
- Base case modeling results; available observations; and blending where
appropriate
Step 2 - constrain/focus problem by identifying practical air quality
management objectives, without closing opportunities.
- arctic POPs deposition?
- Example objectives
 Ozone focus, options to maximize HAPS and PM co-benefits
* Variations of above
- Equivalent importance for 2 or more parameters
+ Expanded in risk assessment discussion (Hubbell)

Step 3 - Develop a basic concept picture based meteorological,
topographical and emissions features

Step 4 - Develop an analytical plan that includes an observations
strategy: acknowledge the unknown and unexpected early on

Step 5 - Use these characterizations to focus on specific quantitative
analyses



Example questions

What pollutant categories are of concern now, after
expected implementation of emission strategies?

— How does changing meteorology, landscape dynamics affect..

What iInformation is available to construct an
environmental state map?

What information is needed?

What time (space frames) periods are of concern for
what indicators of interest?

What are the needs of downstream analytical tools that
assess exposures, risks and benefits across pollutant
categories?

What is the intersection among regulatory and analytical
timeframes — what steps can be taken to harmonize?



Nexus of ozone, PM, 5 (2003-5) and air toxics (NATA 1999)

High Risk Counties often Coincide with Locations where
Criteria Pollutant Issues are Significant -

r ‘|
AT \ |

| Draft -~
- «w(source, J. Hemby
MP report through v

Toxics



Added challenges for MPMM conceptual models

* Multiple conceptual models
— Limit on how well integrated pollutants are

— Consider variety of time, spatial scales;
meteorological patterns

* Final product account for

— Individual as well as linked physical/chemical
descriptions



Remember time sequences
(accountability)



Largest decline in ozone occurs in and downwind of EGU NOx

emissions reductions (2002-2004)
(analysis constrained by absence ambient NOx data)
EGU NOx Tons Reduced

~

Decline in “Seasonal Average”
8-Hour Daily Maximum Ozone
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The major EGU NOx emissions reductions occurs after 2002 (mostly NOx SIP Call)
Average rate of decline in ozone between 1997 and 2002 is 1.1%/year.

Average rate of decline in ozone between 2002 and 2004 is 3.1%/year.
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Case Example: 3D CAIR..mid-
Atlantic sulfate transport 2004

3.0 What can be learned about fine particulates and
sulfate in the BALTIMORE, MD AREA BY
COMBINING DATA FROM MULTIPLE
OBSERVATIONAL AND SIMULATED SOURCES?
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3—day Baocktrajectories
Initialized 2004072200, MCIP

Folar ELF
August 24,2004
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Figure 3.38.  Mean sulfate concentration and total daily
sulfate flux into (negative) and out of (positive) the local
domain boundary for August 24, 2004.



High PM2.5 Event Identified

High Sulfate Concentrations Low Sulfate Concentrations

>= 40% of total PM2.5 OR < 40% of total PM2.5 AND
>= 15 ug/m3 <15 ug/m3
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Trajectory Stays Trajectory Comes Trajectory Stays Trajectory Comes
Local for ~24-36 from Regional Local for ~24-36 from Regional
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Changes in
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Known Source | Known Source Smoke

No known
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Regional Event
(Known Sulfate | Regional Event
Source)
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